富贵论坛

 找回密码
 注册

QQ登录

只需一步,快速开始

手机号码,快捷登录

手机号码,快捷登录

广告
查看: 5|回复: 0

[教程] MapReduce 入门之一步步自实现词频统计功能的教程

[复制链接]

1万

主题

1万

帖子

4万

积分

缴100拍卖保证金

UID
12
金币
0
威望
0
贡献
18052
宣传
0
买家
0
卖家
0
注册时间
2017-11-19
最后登录
2024-4-27

富贵吧信誉勋章签到达人勋章

发表于 2024-4-16 20:06 | 显示全部楼层 |阅读模式

笔记中提供了大量的代码示例,需要说明的是,大部分代码示例都是本人所敲代码并进行测试,不足之处,请大家指正~

LZ 本来想先仔细写一写 Hadoop 伪分布式的部署安装,然后介绍一些 HDFS 的内容再来介绍 MapReduce,是在是没有抽出空,今天就简单入门一下 MapReduce 吧。

一、MapReduce 概述

1.MapReduce 是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.

2.MapReduce 由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算

二、具体实现

1.先来看一下 Eclipse 中此应用的包结构

MapReduce 入门之一步步自实现词频统计功能的<a href=教程-1.png" title="MapReduce 入门之一步步自实现词频统计功能的教程-1.png" />

2.创建 map 的任务处理类:WCMapper

public class WCMapper extends Mapper {

//重写 Mapper 中的 map 方法,MapReduce 框架每读一行数据就调用一次此方法

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

//书写具体的业务逻辑,业务要处理的数据已经被框架传递进来,就是方法的参数中的 key 和 value

//key 是这一行数据的起始偏移量,value 是这一行的文本内容

//1.将 Text 类型的一行的内容转为 String 类型

String line=value.toString();

//2.使用 StringUtils 以空格切分字符串,返回 String[]

String[] words=StringUtils.split(line, " ");

//3.循环遍历 String[],调用 context 的 writer()方法,输出为 key-value 对的形式

//key:单词 value:1

for(String word : words) {

context.write(new Text(word), new LongWritable(1));

}

}

}

2.创建 reduce 的任务处理类:WCReducer:

public class WCReducer extends Reducer {

//框架在 map 处理完之后,将所有的 kv 对缓存起来,进行分组,然后传递一个分组(,例如:<"hello",{1,1,1,1}>),

//调用此方法

@Override

protected void reduce(Text key, Iterable values, Context context)throws IOException, InterruptedException {

//1.定义一个计数器

long count=0;

//2.遍历 values的 list,进行累加求和

for(LongWritable value : values) {

//使用 LongWritable 的 get() 方法,可以将 一个 LongWritable 类型转为 Long 类型

count +=value.get();

}

//3.输出这一个单词的统计结果

context.write(key, new LongWritable(count));

}

}

3.创建一个类,用来描述一个特定的作业:WCRunner,(此类了LZ没有按照规范的模式写)

public class WCRunner {

public static void main(String[] args) throws Exception {

//1.获取 Job 对象:使用 Job 静态的 getInstance() 方法,传入 Configuration 对象

Configuration conf=new Configuration();

Job wcJob=Job.getInstance(conf);

//2.设置整个 Job 所用的类的 jar 包:使用 Job 的 setJarByClass(),一般传入 当前类.class

wcJob.setJarByClass(WCRunner.class);

//3.设置本 Job 使用的 mapper 和 reducer 的类

wcJob.setMapperClass(WCMapper.class);

wcJob.setReducerClass(WCReducer.class);

//4.指定 reducer 输出数据的 kv 类型 注:若 mapper 和 reducer 的输出数据的 kv 类型一致,可以用如下两行代码设置

wcJob.setOutputKeyClass(Text.class);

wcJob.setOutputValueClass(LongWritable.class);

//5.指定 mapper 输出数据的 kv 类型

wcJob.setMapOutputKeyClass(Text.class);

wcJob.setMapOutputValueClass(LongWritable.class);

//6.指定原始的输入数据存放路径:使用 FileInputFormat 的 setInputPaths() 方法

FileInputFormat.setInputPaths(wcJob, new Path("/wc/srcdata/"));

//7.指定处理结果的存放路径:使用 FileOutputFormat 的 setOutputFormat() 方法

FileOutputFormat.setOutputPath(wcJob, new Path("/wc/output/"));

//8.将 Job 提交给集群运行,参数为 true 表示显示运行状态

wcJob.waitForCompletion(true);

}

}

4.将此项目导出为 jar 文件

步骤:右击项目 ---> Export ---> Java ---> JAR file --->指定导出路径(我指定的为:e:\wc.jar) ---> Finish

MapReduce 入门之一步步自实现词频统计功能的教程-2.png

MapReduce 入门之一步步自实现词频统计功能的教程-3.png

5.将导出的 jar 包上传到 linux 上

LZ使用的方法是:在 SecureCRT 客户端中使用 Alt + p 快捷键打开上传文件的终端,输入 put e"\wc.jar 即可上传

MapReduce 入门之一步步自实现词频统计功能的教程-4.png

6.创建初始测试文件:words.log

命令: vi words.log 自己输入测试数据即可

MapReduce 入门之一步步自实现词频统计功能的教程-5.png

7.在 hdfs 中创建存放初始测试文件 words.log 的目录:我们在 WCRunner 中指定的是 /wc/srcdata/

命令:

[hadoop@crawl ~]$ hadoop fs -mkdir /wc

[hadoop@crawl ~]$ hadoop fs -mkdir /wc/srcdata

8.将初始测试文件 words.log 上传到 hdfs 的相应目录

命令:[hadoop@crawl ~]$ hadoop fs -put words.log /wc/srcdata

9.运行 jar 文件

命令:hadoop jar wc.jar com.software.hadoop.mr.wordcount.WCRunner

此命令为 hadoop jar wc.jar 加上 WCRunner类的全类名,程序的入口为 WCRunner 内的 main 方法,运行完此命令便可以看到输出日志信息:

MapReduce 入门之一步步自实现词频统计功能的教程-6.png

然后前去我们之前配置的存放输出结果的路径(LZ之前设置的为:/wc/output/)就可以看到 MapReduce 的执行结果了

输入命令:hadoop fs -ls /wc/output/ 查看以下 /wc/output/ 路径下的内容

MapReduce 入门之一步步自实现词频统计功能的教程-7.png

结果数据就在第二个文件中,输入命令:hadoop fs -cat /wc/output/part-r-00000 即可查看:

MapReduce 入门之一步步自实现词频统计功能的教程-8.png

至此我们的这个小应用就完成了,是不是很有意思的,LZ 在实现的时候还是发生了一点小意外:

MapReduce 入门之一步步自实现词频统计功能的教程-9.png

LZ 查阅资料发现这是由于 jdk 版本不一致导致的错误,统一 jdk 版本后便没有问题了。

以上这篇MapReduce 入门之一步步自实现词频统计功能的教程就是富贵论坛小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|手机版|小黑屋|富贵论坛 ( 琼ICP备2022019866号-1 )

GMT+8, 2024-5-25 00:11 , Processed in 0.115343 second(s), 41 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表